
NAG Fortran Library Routine Document

F04FEF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

F04FEF solves the Yule–Walker equations for a real symmetric positive-definite Toeplitz system.

2 Specification

SUBROUTINE F04FEF (N, T, X, WANTP, P, WANTV, V, VLAST, WORK, IFAIL)

INTEGER N, IFAIL
double precision T(0:N), X(*), P(*), V(*), VLAST, WORK(*)
LOGICAL WANTP, WANTV

3 Description

F04FEF solves the equations

Tx ¼ �t,

where T is the n by n symmetric positive-definite Toeplitz matrix

T ¼

�0 �1 �2 . . . �n�1

�1 �0 �1 . . . �n�2

�2 �1 �0 . . . �n�3

: : : :
�n�1 �n�2 �n�3 . . . �0

0
BBBB@

1
CCCCA

and t is the vector

tT ¼ �1; �2 . . . �nð Þ.
The routine uses the method of Durbin (see Durbin (1960) and Golub and Van Loan (1996)). Optionally
the mean square prediction errors and/or the partial correlation coefficients for each step can be returned.
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5 Parameters

1: N – INTEGER Input

On entry: the order of the Toeplitz matrix T .

Constraint: N � 0. When N ¼ 0, then an immediate return is effected.
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2: Tð0 : NÞ – double precision array Input

On entry: Tð0Þ must contain the value �0 of the diagonal elements of T , and the remaining N
elements of T must contain the elements of the vector t.

Constraint: Tð0Þ > 0:0. Note that if this is not true, then the Toeplitz matrix cannot be positive-
definite.

3: Xð�Þ – double precision array Output

Note: the dimension of the array X must be at least max 1;Nð Þ.
On exit: the solution vector x.

4: WANTP – LOGICAL Input

On entry: must be set to .TRUE. if the partial (auto)correlation coefficients are required, and must be
set to .FALSE. otherwise.

5: Pð�Þ – double precision array Output

Note: the dimension of the array P must be at least max 1;Nð Þ if WANTP ¼ :TRUE: and at least 1
otherwise.

On exit: with WANTP as .TRUE., the ith element of P contains the partial (auto)correlation
coefficient, or reflection coefficient, pi for the ith step. (See Section 8 and Chapter G13.) If
WANTP is .FALSE., then P is not referenced. Note that in any case, xn ¼ pn.

6: WANTV – LOGICAL Input

On entry: must be set to .TRUE. if the mean square prediction errors are required, and must be set
to .FALSE. otherwise.

7: Vð�Þ – double precision array Output

Note: the dimension of the array V must be at least max 1;Nð Þ if WANTV ¼ :TRUE: and at least 1
otherwise.

On exit: with WANTV as .TRUE., the ith element of V contains the mean square prediction error, or
predictor error variance ratio, vi, for the ith step. (See Section 8 and Chapter G13.) If WANTV is
.FALSE., then V is not referenced.

8: VLAST – double precision Output

On exit: the value of vn, the mean square prediction error for the final step.

9: WORKð�Þ – double precision array Workspace

Note: the dimension of the array WORK must be at least max 1;N� 1ð Þ.

10: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you
should refer to Chapter P01 for details.

On final exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �1

On entry, N < 0,
or Tð0Þ � 0:0.

IFAIL > 0

The principal minor of order (IFAILþ 1) of the Toeplitz matrix is not positive-definite to working
accuracy. If, on exit, xIFAIL is close to unity, then the principal minor was close to being singular,

and the sequence �0; �1; . . . ; � IFAIL may be a valid sequence nevertheless. The first IFAIL elements

of X return the solution of the equations

T IFAILx ¼ � �1; �2; . . . ; � IFAIL

� �T
,

where T IFAIL is the IFAILth principal minor of T . Similarly, if WANTP and/or WANTV are true,

then P and/or V return the first IFAIL elements of P and V respectively and VLAST returns vIFAIL.

In particular if IFAIL ¼ N, then the solution of the equations Tx ¼ �t is returned in X, but �N is

such that TNþ1 would not be positive-definite to working accuracy.

7 Accuracy

The computed solution of the equations certainly satisfies

r ¼ Txþ t,

where rk k1 is approximately bounded by

rk k1 � c�
Yn
i¼1

1þ pij jð Þ � 1

 !
,

c being a modest function of n and � being the machine precision. This bound is almost certainly
pessimistic, but it has not yet been established whether or not the method of Durbin is backward stable. If
pnj j is close to one, then the Toeplitz matrix is probably ill-conditioned and hence only just positive-
definite. For further information on stability issues see Bunch (1985), Bunch (1987), Cybenko (1980) and

Golub and Van Loan (1996). The following bounds on T�1
�� ��

1
hold:

max
1

vn�1
;

1Yn�1

i¼1

1� pið Þ

0
BBBB@

1
CCCCA � T�1

�� ��
1
�
Yn�1

i¼1

1þ pij j
1� pij j

� �
.

Note: vn < vn�1. The norm of T�1 may also be estimated using routine F04YCF.

8 Further Comments

The number of floating-point operations used by F04FEF is approximately 2n2, independent of the values
of WANTP and WANTV.

The mean square prediction error, vi, is defined as

vi ¼ �0 þ �1�2 . . . � i�1ð Þyi�1ð Þ=�0,
where yi is the solution of the equations
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Tiyi ¼ � �1�2 . . . � ið ÞT

and the partial correlation coefficient, pi, is defined as the ith element of yi. Note that vi ¼ 1� p2i
� �

vi�1.

9 Example

To find the solution of the Yule–Walker equations Tx ¼ �t, where

T ¼

4 3 2 1
3 4 3 2
2 3 4 3
1 2 3 4

0
BB@

1
CCA and t ¼

3
2
1
0

0
BB@

1
CCA.

9.1 Program Text

* F04FEF Example Program Text
* Mark 15 Release. NAG Copyright 1991.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX
PARAMETER (NMAX=100)

* .. Local Scalars ..
DOUBLE PRECISION VLAST
INTEGER I, IFAIL, N
LOGICAL WANTP, WANTV

* .. Local Arrays ..
DOUBLE PRECISION P(NMAX), T(0:NMAX), V(NMAX), WORK(NMAX-1),

+ X(NMAX)
* .. External Subroutines ..

EXTERNAL F04FEF
* .. Executable Statements ..

WRITE (NOUT,*) ’F04FEF Example Program Results’
* Skip heading in data file

READ (NIN,*)
READ (NIN,*) N
WRITE (NOUT,*)
IF ((N.LT.0) .OR. (N.GT.NMAX)) THEN

WRITE (NOUT,99999) ’N is out of range. N = ’, N
ELSE

READ (NIN,*) (T(I),I=0,N)
WANTP = .TRUE.
WANTV = .TRUE.

*
IFAIL = -1

*
CALL F04FEF(N,T,X,WANTP,P,WANTV,V,VLAST,WORK,IFAIL)

*
IF (IFAIL.EQ.0) THEN

WRITE (NOUT,*)
WRITE (NOUT,*) ’Solution vector’
WRITE (NOUT,99998) (X(I),I=1,N)
IF (WANTP) THEN

WRITE (NOUT,*)
WRITE (NOUT,*) ’Reflection coefficients’
WRITE (NOUT,99998) (P(I),I=1,N)

END IF
IF (WANTV) THEN

WRITE (NOUT,*)
WRITE (NOUT,*) ’Mean square prediction errors’
WRITE (NOUT,99998) (V(I),I=1,N)

END IF
ELSE IF (IFAIL.GT.0) THEN

WRITE (NOUT,*)
WRITE (NOUT,99999) ’Solution for system of order’, IFAIL
WRITE (NOUT,99998) (X(I),I=1,IFAIL)
IF (WANTP) THEN
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WRITE (NOUT,*)
WRITE (NOUT,*) ’Reflection coefficients’
WRITE (NOUT,99998) (P(I),I=1,IFAIL)

END IF
IF (WANTV) THEN

WRITE (NOUT,*)
WRITE (NOUT,*) ’Mean square prediction errors’
WRITE (NOUT,99998) (V(I),I=1,IFAIL)

END IF
END IF

END IF
STOP

*
99999 FORMAT (1X,A,I5)
99998 FORMAT (1X,5F9.4)

END

9.2 Program Data

F04FEF Example Program Data

4 :Value of N
4.0 3.0 2.0 1.0 0.0 :End of vector T

9.3 Program Results

F04FEF Example Program Results

Solution vector
-0.8000 0.0000 -0.0000 0.2000

Reflection coefficients
-0.7500 0.1429 0.1667 0.2000

Mean square prediction errors
0.4375 0.4286 0.4167 0.4000
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